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Since antiquity mathematicians (and not only them) have taken an interest in construct-

ing magic squares. Probably the �rst magic square ever created is the one shown in Fig.1.

Its origin is shrouded in the mystical legends of ancient China. It became to be known as

Luo Shu (Luo river writing). There was no clear connection between this con�guration

and mathematical study until the time of Yang Hui, even though it was described in the

sixth century. Another well-known magic square (Fig. 2) is in the painting Melancholy

([3], p.6) made by the famous renaissance artist Albrecht D�urer in 1514 (the year is formed

in the middle of the lowest row).

4 9 2

3 5 7

8 1 6

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

Figure 1 Figure 2

A magic square of order n is an n � n matrix (square table) containing the natural

numbers 1; 2; 3; : : : ; n2 in some order, and such that the sum of the numbers along any

row, column, or main diagonal is a �xed constant. It is easy to see that this constant in

a square of order n must be
n(n2+1)

2
. In [3] and elsewhere we can �nd constructions of

magic squares of order n for all natural numbers n 6= 2. There is no magic square of order

2, as the reader may easily verify.

A generalization of magic squares is magic cubes. In Fig. 3 a magic cube of order 4 is

depicted, layer by layer.

De�nition. A magic cube of order n is a 3-dimensional n� n� n matrix (cubical table)

Qn = [q(i; j; k); 1 � i; j; k � n]

containing the natural numbers 1; 2; 3; : : : ; n3 in some order, and such that

nX

x=1

q(x; j; k) =

nX

x=1

q(i; x; k) =

nX

x=1

q(i; j; x) =
n(n

3
+1)

2
for all i; j; k = 1; : : : ; n
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(Note that in a magic cube we make no requirement about the sums of elements on any

diagonal.)

The triple of numbers (i; j; k) called the coordinates of the element q(i; j; k).

Figure 3

A magic square of order 1 is a magic cube of order 1. Just as a magic square of order 2

does not exist a magic cube of order 2 does not exist either.

In this paper we prove the following theorem:

Theorem. For every natural number n 6= 2 there exists a magic cube of order n.

Before we prove this theorem we will consider Latin squares, which will be used in the

proof. A Latin square Rn = [r(i; j); 1 � i; j � n] of order n is an n�n matrix such that

every row and every column is a permutation of the set of natural numbers f1; 2; : : : ; ng.
Two Latin squares Rn = [r(i; j)] and Sn = [s(i; j)] of order n are called orthogonal, if

whenever i; i0; j; j0 2 f1; 2; : : : ; ng are such that r(i; j) = r(i0; j0) and s(i; j) = s(i0; j0), then

we must have i = i0 and j = j0.

Two orthogonal Latin squares of order 4 are depicted in Fig. 4.

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3

Figure 4

In 1960 R.C.Bose, S.S.Shrikhande and E.T.Parker [1] proved that two orthogonal Latin

squares of order n exist if and only if n 6= 2; 6. We use this statement to prove our theorem.

Proof of the Theorem. Let Rn = [r(i; j); 1 � i; j � n] and Sn = [s(i; j); 1 � i; j � n] be

two orthogonal Latin squares of order n, and let Mn = [m(i; j); 1 � i; j � n] be a magic

square of order n.

Let us de�ne a magic cube Qn = [q(i; j; k); 1 � i; j; k � n] in the following way:

q(i; j; k) = [s(i; r(j; k))� 1]n2 +m(i; s(j; k)) for all 1 � i; j; k � n:
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We shall prove, in four steps, that Qn is a magic cube.

1. All elements of the squares Rn and Sn are from the set f1; 2; : : : ; ng and all elements

of Mn are from the set f1; : : : ; n2g. It follows immediately that for all elements of Qn

we have 1 � q(i; j; k) � n3.

2. In this part we prove that two elements of Qn with di�erent coordinates can not

be equal. Let us suppose q(i; j; k) = q(i0; j0; k0). We show that this implies that i = i0,

j = j0 and k = k0:

From the de�nition of Qn we have

[s(i; r(j; k))� 1]n2 +m(i; s(j; k)) = [s(i0; r(j0; k0))� 1]n2 +m(i0; s(j0; k0)):

By rearranging this equation we get

�[s(i; r(j; k))� s(i0; r(j0; k0))]n2 =m(i; s(j; k))�m(i0; s(j0; k0)): (1)

Because all the elements of Mn are from the set f1; : : : ; n2g, the right hand side of (1) is

not a non-zero multiple of n2. On the left is a whole multiple of n2. This equality in (1)

can only occur if s(i; r(j; k)) � s(i0; r(j0; k0)) = 0: Hence

s(i; r(j; k)) = s(i0; r(j0; k0)) (2)

and

m(i; s(j; k)) =m(i0; s(j0; k0)): (3)

In a magic square no two elements are identical. If two elements of Mn are equal, then

their coordinates are the same, so from (3) we have

i = i0 and s(j; k) = s(j0; k0):

By substitution of i0 = i in (2) we get s(i; r(j; k)) = s(i; r(j0; k0)): Because Sn is a Latin

square, from the equality of the �rst coordinate the equality of the second coordinate

follows, so that r(j; k) = r(j0; k0): From the assumption that Sn;Rn are orthogonal Latin

squares we get j = j0 and k = k0:

3. Next we prove that the sum of numbers in every row is the same. We have

nX

x=1

q(x; j; k) =

nX

x=1

[s(x; r(j; k))� 1]n2 +

nX

x=1

m(x; s(j; k)) =

= [
n(n+1)

2
� n]n2 +

n(n2+1)

2
=

n(n3+1)

2

Then, because
nX

x=1

s(x; r(j; k)) =

nX

x=1

s(i; r(x; k)) =

nX

x=1

s(i; r(j; x))
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and
nX

x=1

m(x; s(j; k)) =

nX

x=1

m(i; s(x; k)) =

nX

x=1

m(i; s(j; x))

similarly we get

nX

x=1

q(i; x; k) =

nX

x=1

q(i; j; x) =
n(n3+1)

2

4. The above construction of magic squares is based on the use of two orthogonal Latin

squares and therefore is not valid for n = 6. So to complete the proof, we exhibit the

magic cube Q6, in Figure 5.

6 192 193 199 30 31

72 174 168 49 151 37

103 138 85 96 115 114

139 79 126 127 102 78

150 61 55 162 43 180

181 7 24 18 210 211

212 26 23 14 191 185

146 47 53 167 62 176

113 83 128 125 98 104

74 137 95 86 116 143

71 152 158 56 173 41

35 206 194 203 11 2

214 28 16 21 189 183

148 45 57 160 64 177

76 117 87 94 135 142

111 100 124 129 82 105

69 154 165 52 171 40

33 207 202 195 10 4

213 9 15 22 208 184

39 172 166 51 153 70

75 136 88 93 118 141

112 81 123 130 99 106

178 63 58 159 46 147

34 190 201 196 27 3

5 209 200 197 8 32

179 44 50 164 65 149

140 80 131 122 101 77

107 134 92 89 119 110

38 155 161 59 170 68

182 29 17 20 188 215

1 187 204 198 25 36

67 169 157 60 156 42

144 97 132 121 84 73

108 120 91 90 133 109

145 66 54 163 48 175

186 12 13 19 205 216

Figure 5

Remark 1. The construction of the magic cube of order 4, shown in Figure 3, was based

on the magic square shown in Fig. 2 and from the two orthogonal Latin squares shown in

Fig. 4.

For example,

q(2; 3; 4) = (s(2; r(3; 4)) � 1) � 16 +m(2; s(3; 4))

= (s(2; 2) � 1) � 16 +m(2; 1) = 3 � 16 + 5 = 53

and one sees in Fig. 2 that for i = 2 (that is at level B), the (3; 4) entry is indeed 53.

Remark 2. Two orthogonal Latin squares of order n = 5 are depicted in Fig. 6, and the

pattern used here generalises to arbitrary odd n, as the reader may easily verify.
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1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

1 2 3 4 5

5 1 2 3 4

4 5 1 2 3

3 4 5 1 2

2 3 4 5 1

Figure 6

Using this pattern and the following, it is easy to make a computer program which

constructs magic cubes for every odd n. Instead of the magic square Mn we can use the

square M�

n
= [m�(i; j)], where m�(i; j) = [r(i; j) � 1]n2 + s(i; j) for all 1 � i; j � n: In

this square the sums of the rows and columns are the same, but the sums of the diagonals

need not be the same, so it is not a magic square in the usual sense. This does not matter,

since the diagonal sums were not used in the proof of our theorem.

Remark 3. Magic cubes generalize to magic hypercubes in p-dimensional Euclidian space.

A magic p-dimensional hypercube of order n is a p-dimensional n�n�n�� � ��n matrix

Qp

n
= [qp(i1; i2; : : : ; ip)]

containing the natural numbers 1; 2; 3; : : : ; np in some order, and such that the sum of the

numbers along every row is
n(np+1)

2
. (By a row of Qp

n
we mean an n-tuple of elements

which have at (p � 1) places the identical coordinates.)

A Latin p-dimensional hypercube Up

n
of order n is a p-dimensional matrix n�n�� � ��n

whose elements in every row are a permutation of the numbers 1; 2; 3; : : : ; n.

By a generalization of the previous proof we can similarly prove:

For all natural numbers n 6= 2; 6 and p � 2 there exists a magic hypercube Qp

n
.

A magic hypercube Q
p

1 of order 1 has only one element. Just as a magic squareM2 of

order 2 does not exist a magic hypercube Q
p

2 does not exist either. Therefore we suppose

that n � 3.

We show how to construct a magic hypercube Qp

n
, for all natural numbers 3 � n, n 6= 6

and p � 3. We use mathematical induction on p.

Let us suppose 3 � n and n 6= 6. If p = 2, then U2
n
is a Latin square of order n and

Q2
n
is a magic square of order n.

Let p > 2. We suppose that a (p� 1)-dimensional Latin hypercube

Up�1
n

= [up�1(i1; i2; : : : ; ip�1)] and a magic hypercube Qp�1
n

= [qp�1(i1; i2; : : : ; ip�1)] are

already constructed. A p-dimensional Latin hypercube Up

n
= [up(i1; : : : ; ip)] of order n

and a p-dimensional magic hypercube Qp

n
= [qp(i1; : : : ; ip)] of order n can be de�ned by:

up(i1; i2; : : : ; ip) = up�1(i1; i2; : : : ; ip�2; r(ip�1; ip))

and

qp(i1; i2; : : : ; in) =

= fup�1(i1; i2; : : : ; ip�2; r(ip�1; ip)) � 1gnp�1 + qp�1(i1; i2; : : : ; ip�2; s(ip�1; ip));

for all 1 � i1; i2; : : : ; ip � n. Details of the proof can safely be left to the reader.
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