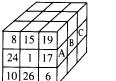
A construction of magic cubes

MARIÁN TRENKLER

In this paper a *magic cube* of order n is a 3-dimensional matrix $\mathbf{Q}_n = \{\mathbf{q}_n(i,j,k); 1 \le i,j,k \le n\}$ containing natural numbers 1,2, ... n^3 such that the sums of the numbers along each row (n-tuple of elements having the same coordinates on two places) and also along each of its four great diagonals are the same. This contrasts with a previous article [1] which considered magic cubes with no requirement for the diagonal sums.

In Figure 1 a magic cube \mathbb{Q}_3 is depicted. The sum of the three numbers in every row is 42. The sums of the numbers on the diagonals (the triplets $\{8, 14, 20\}, \{19, 14, 9\}, \{10, 14, 18\}$ and $\{6, 14, 22\}$) are 42 too.



_	7	7	7
12	25	5	И
7	14	21	В
23	3	16	\mathbb{Z}

FIGURE 1 – Magic cube O₃

Using a pair of orthogonal Latin squares, it was proved that such matrices of order n exist for each $n \neq 2$. Probably the first mention of a magic cube (of order 4) appeared in a letter from Fermat on April 1, 1640 (see [2, p. 365].) More information on magic squares and cubes can be found in books [2] and [3]. In this paper we describe, in three steps, a construction of a magic cube \mathbf{Q}_n for every integer $n \neq 2$. (In a similar way we can construct a magic square \mathbf{M}_n for every integer $n \neq 2$.)

Step 1.

If n is an odd integer, then a magic cube \mathbf{Q}_n can be constructed using the following formula

$$\mathbf{q}_{n}(i,j,k) = \left[(i-j+k-1) - n \left\lfloor \frac{i-j+k-1}{n} \right\rfloor \right] n^{2} + \left[(i-j-k) - n \left\lfloor \frac{i-j-k}{n} \right\rfloor \right] n + \left[(i+j+k-2) - n \left\lfloor \frac{i+j+k-2}{n} \right\rfloor \right] + 1.$$

The symbol $\lfloor x \rfloor$ denotes the integer part of x.

The formula was derived using two mutually orthogonal Latin squares of odd order n, $\mathbf{R}_n = \{\mathbf{r}(i,j) = (i+j+a) - \lfloor \frac{i+j+a}{n} \rfloor \}$ and $\mathbf{S}_n = \{\mathbf{s}(i,j) = (i-j+b) - \lfloor \frac{i-j+b}{n} \rfloor \}$ where a and b are two constants and the formula is taken from [1, p. 57]. This formula can be rewritten as

$$\mathbf{q}_n^*(i,j,k) = \mathbf{s}(i,\mathbf{s}(j,k))n^2 + \mathbf{s}(i,\mathbf{r}(j,k))n + \mathbf{r}(i,\mathbf{r}(j,k)) + 1$$

The constants a and b were chosen so that for m = (n + 1)/2

$$\mathbf{s}(m, \mathbf{s}(m, m)) = \mathbf{s}(m, \mathbf{r}(m, m)) = \mathbf{r}(m, \mathbf{r}(m, m)) = \frac{n-1}{2}$$

The proof of the correctness of our formula is similar to [1, p. 58]. The sum

on every diagonal is the same because for each triple (i, j, k) from the definition of \mathbf{Q}_n it follows $(\bar{x} \text{ denotes the number } n + 1 - x)$

$$\mathbf{q}_{n}(i, j, k) + \mathbf{q}_{n}(\bar{i}, \bar{j}, \bar{k}) = \sum_{k=0}^{2} (n-1)n^{k} + 2 = n^{3} + 1$$

$$\mathbf{q}_{n}(\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}) = \frac{n^{3}+1}{2}.$$

and

The sum of numbers on each diagonal is $\frac{(n-1)}{2}(n^3+1)+\frac{(n^3+1)}{2}=\frac{n(n^3+1)}{2}$.

Step 2.

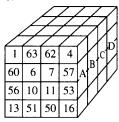
If n = 4k, k = 1, 2, 3, ..., then a magic cube \mathbf{Q}_n can be constructed by the following formulas

$$\mathbf{q}_{n}(i,j,k) = (k-1)n^{2} + (j-1)n + i \quad \text{if } \mathcal{I}(i,j,k) \text{ is odd,}$$

$$\mathbf{q}_{n}(i,j,k) = (n-k)n^{2} + (n-j)n + (n-i) + 1 \quad \text{if } \mathcal{I}(i,j,k) \text{ is even,}$$

where
$$\mathfrak{I}(i,j,k) = \left(i + \left\lfloor \frac{2(i-1)}{n} \right\rfloor + j + \left\lfloor \frac{2(j-1)}{n} \right\rfloor + k + \left\lfloor \frac{2(k-1)}{n} \right\rfloor\right)$$
.

In Figure 2 a magic cube \mathbf{Q}_4 is depicted. The sums of the four numbers in each row are 130. The sums of the numbers on the diagonals (the quadruples $\{1, 43, 22, 64\}, \{4, 42, 23, 61\}, \{13, 39, 26, 52\}$ and $\{16, 38, 27, 49\}$) are 130 too.



_				
\angle	\angle	\angle	\angle	7
48	18	19	45	\vee
21	43	42	24	B,
25	39	38	28	
36	30	31	33	
	25	21 4325 39	21 43 42 25 39 38	21 43 42 24 25 39 38 28

	\overline{Z}	Z	\overline{Z}	7
32	34	35	29	
37	27	26	40	[c
41	23	22	44	
20	46	47	17	

FIGURE 2 - Magic cube O₄

The proof of the correctness of our formulas follows from the following three facts:

- (i) No two elements with different coordinates are the same because $\mathcal{I}(\bar{i}, \bar{j}, \bar{k})$ is odd, if and only, if $\mathcal{I}(i, j, k)$ is odd.
- (ii) The sums of numbers in the rows are the same, because, for every odd coordinate i (or j, or k):

$$\mathbf{q}_n(i,j,k) + \mathbf{q}_n(i+1,j,k) = n^3$$
 or $n^3 + 2$
 $\mathbf{q}_n(i,j,k) + \mathbf{q}_n(i,j+1,k) = n^3 - n + 1$ or $n^3 + n + 1$
 $\mathbf{q}_n(i,j,k) + \mathbf{q}_n(i,j,k+1) = n^3 - n^2 + 1$ or $n^3 + n^2 + 1$.

In every row there are n/4 pairs of elements whose sum is n^3 (or $n^3 - n + 1$ or $n^3 - n^2 + 1$) and the same number of pairs whose sum is $n^3 + 2$ (or $n^3 + n + 1$ or $n^3 + n^2 + 1$).

(iii) The sums on the diagonals are the same, because, for every triple (i, j, k):

$$\mathbf{q}_n(i,j,k) + \mathbf{q}_n(\bar{i},\bar{j},\bar{k}) = n^3 + 1.$$

Step 3.

If n = 4k + 2, k = 1, 2, 3, ..., then a construction of a magic cube \mathbf{Q}_n starts from a magic cube $\mathbf{Q}_{n/2}$ and an auxiliary cube $\mathbf{V}_n = \{\mathbf{v}_n(i,j,k)\}$ of order n. First we describe the construction of \mathbf{V}_n . In Figure 3 six layers of \mathbf{V}_6 are shown.

0	5	5	0	6	5	7	2	2	7	1	2
3	6	3	6	3	0	4	1	4	1	4	7
3	5	5	0	3	5	4	2	2	7	4	2
6	0	3	6	6	0	1	7	4	1	1	7
6	0	0	6	3	6	1	7	7	1	4	1
3	5	5	3	0	5	4	2	2	4	7	2
	1	st L	aye	r			2	nd I	_aye	r	
0	5	5	6	0	5	7	2	2	1	7	2
3	6	0	3	3	6	4	1	7	4	4	1
6	0	3	6	6	0	1	7	4	1	1	7
3	5	5	0	3	5	4	2	2	7	4	2
6	0	3	6	6	0	1	7	4	1	1	7
3	5	5	0	3	5	4	2	2	7	4	2
	3:	rd L	aye	r			4	th L	aye	r	
5	0	5	0	6	3	2	7	2	7	1	2
3	6	3	6	3	0	4	1	4	1	4	7
0	3	3	6	3	6	7	4	4	1	4	7
5	6	5	0	0	5	2	1	2	7	7	2
5	0	5	3	3	5	2	7	2	4	4	2
3	6	0	6	6	0	4	1	7	1	1	7
	5	th L	aye	r			6	th L	aye	r	

FIGURE 3

This cube consists of 27 cubelets of order 2, each containing the numbers 0, $1, \ldots, 7$. The arrangements of the numbers in cubelets is such that the sums of numbers in each row and each diagonal are the same, i.e. 21.

If n = 6(2k + 1) for k = 1, 2, 3, ..., then V_n is obtained by the composition of $(2k + 1)^3$ copies of V_6 such that

$$\mathbf{v}_n(i,j,k) = \mathbf{v}_6\left(i - 6\left\lfloor\frac{i-1}{6}\right\rfloor, j - 6\left\lfloor\frac{j-1}{6}\right\rfloor, k - 6\left\lfloor\frac{k-1}{6}\right\rfloor\right)$$
 for all $1 \le i,j,k \le n$.

If n = 6(2k + 1) + 4 for k = 0, 1, 2, ..., then our construction starts from V_m , where m = n - 4 and six matrices (in pairs of orders

 $m \times m \times m \times 2$ and $m \times 2 \times 2$ and $m \times 2 \times 2 \times 2$) called blocks. Blocks

$$\mathbf{A} = \{\mathbf{a}(i,j,k)\} \quad \text{and} \quad \overline{\mathbf{A}} = \{\overline{\mathbf{a}}(i,j,k)\}, \quad 1 \le i,j \le m, \quad 1 \le k \le 2,$$

$$\mathbf{B} = \{\mathbf{b}(i,j,k)\} \quad \text{and} \quad \overline{\mathbf{B}} = \{\overline{\mathbf{b}}(i,j,k)\}, \quad 1 \le i \le m, \quad 1 \le j,k \le 2,$$

$$\mathbf{C} = \{\mathbf{c}(i,j,k)\} \quad \text{and} \quad \overline{\mathbf{C}} = \{\overline{\mathbf{c}}(i,j,k)\}, \quad 1 \le i,j,k \le 2$$

are defined by relations

$$\mathbf{a}(i,j,k) = \mathbf{b}(i,j,k) = \mathbf{c}(i,j,k) = \mathbf{v}_m(i,j,k),$$

$$\bar{\mathbf{a}}(i,j,k) = \bar{\mathbf{b}}(i,j,k) = \bar{\mathbf{c}}(i,j,k) = 7 - \mathbf{v}_m(i,j,k),$$

for all define elements with coordinates (i, j, k).

The auxiliary cube V_n consists of a cube V_m , three pairs of blocks A and \overline{A} , six pairs of B and \overline{B} and four pairs of C and \overline{C} . The blocks C and \overline{C} are situated by the vertices of V_n , blocks B and \overline{B} are situated by the edges of V_n and blocks A and \overline{A} at the opposite faces of V_m . In Figure 4a there are the first two layers of the auxiliary cube V_n , in Figure 4b there are the x-th, for $x = 3, 4, 5, \ldots, n-2$, layers and in Figure 4c there are the last two (the (n-1)-th and the n-th) layers.

Every diagonal of V_n is formed from diagonals of C, V_m and \overline{C} . It follows from this construction that the sum of numbers in every row and every diagonal of V_n is greater by 14 than the sum in any row of V_m .

$\mathbf{c}(1,1,x)$	c(1,2, x)	$\mathbf{b}(1,1,x)$		b $(m,1, x)$	$\bar{\mathbf{c}}(1,1,x)$	$\bar{\mathbf{c}}(1,2,x)$
c(2,1, x)	c (2,2, x)	b (1,2, x)		$\mathbf{b}(m,2,x)$	$\bar{\mathbf{c}}(2,1,x)$	$\bar{\mathbf{c}}(2,2,x)$
b (1,1, x)	b (1,2, x)	$\mathbf{a}(1,1,x)$		$\mathbf{a}(1, m, x)$	$\bar{\mathbf{b}}(1,1,x)$	$\bar{\mathbf{b}}(1,2,x)$
	•••	•••		•••	•••	•••
$\mathbf{b}(m,1,x)$	$\mathbf{b}(m,2,x)$	$\mathbf{a}(m,1,x)$		$\mathbf{a}(m, m, x)$	$\bar{\mathbf{b}}(2m,1x)$	$\bar{\mathbf{b}}(m,2,x)$
$\bar{\mathbf{c}}(1,1,x)$	$\bar{\mathbf{c}}(1,2,x)$	$\bar{\mathbf{b}}(1,1,x)$	•••	$\bar{\mathbf{b}}(m,1,x)$	c(1,1, x)	c(1,2, x)
$\bar{\mathbf{c}}(2,1,x)$	$\bar{\mathbf{c}}(2,2,x)$	$\bar{\mathbf{b}}(1,2,x)$		$\bar{\mathbf{b}}(m,2,x)$	c(2,1,x)	$\mathbf{c}(2,2,x)$

FIRST AND SECOND LAYER OF V_n , x = 1, 2.

$\mathbf{b}(x,1,1)$	b (x,1,2)	a(x,1,1)	 $\mathbf{a}(x, m, 1)$	$\bar{\mathbf{b}}(x,1,1)$	$\bar{\mathbf{b}}(x,1,2)$
$\mathbf{b}(x,2,1)$	b (x,2,2)	a (x,1,2)	 $\mathbf{a}(x, m, 2)$	$\bar{\mathbf{b}}(x,2,1)$	$\bar{\mathbf{b}}(x,2,2)$
a(x,1,1)	a(x,1,2)	$\mathbf{v}_m(1,1,x)$	 $\mathbf{v}_m(1, m, x)$	$\bar{\mathbf{a}}(x,1,1)$	$\bar{\mathbf{a}}(x,1,2)$
			 •••		•••
$\mathbf{a}(x, m, 1)$	a(x, m, 2)	$\mathbf{v}_m(m,1,x)$	 $\mathbf{v}_m(m, m, x)$	$\bar{\mathbf{a}}(x, m, 1)$	$\bar{\mathbf{a}}(x, m, 2)$
$\bar{\mathbf{b}}(x,1,1)$	$\bar{\bf b}(x,1,2)$	$\bar{\mathbf{a}}(x,1,1)$	 $\bar{\mathbf{a}}(x, m, 1)$	$\mathbf{b}(x,1,1)$	b (<i>x</i> ,1,2)
$\bar{\mathbf{b}}(x,2,1)$	$\bar{\bf b}(x,2,2)$	$\bar{\mathbf{a}}(x,1,2)$	 $\bar{\mathbf{a}}(x, m, 2)$	$\mathbf{b}(x,2,1)$	b $(x,2,2)$

$$(x + 2)$$
-th LAYER OF V_n , $x = 1, 2, ..., m$

$\bar{\mathbf{c}}(1,1,x)$	$\bar{\mathbf{c}}(1,2,x)$	$\bar{\mathbf{b}}(1,1,x)$		$\bar{\mathbf{b}}(m,1,x)$	c(1,1, x)	c (1,2, x)
$\bar{\mathbf{c}}(2,1,x)$	$\bar{\mathbf{c}}(2,2,x)$	$\bar{\mathbf{b}}(1,2,x)$	•••	$\bar{\mathbf{b}}(m,2,x)$	c (2,1, x)	c(2,2,x)
$\bar{\mathbf{b}}(1,1,x)$	$\bar{\mathbf{b}}(1,2,x)$	$\bar{\mathbf{a}}(1,1,x)$	• • •	$\bar{\mathbf{a}}(1, m, x)$	$\mathbf{b}(1,1,x)$	b (1,2, x)
	•••		•••	•••	•••	•••
$\bar{\mathbf{b}}(m,1,x)$	$\bar{\mathbf{b}}(m,2,x)$	$\bar{\mathbf{a}}(m,1,x)$		$\tilde{\mathbf{a}}(m, m, x)$	$\mathbf{b}(m,1,x)$	b (<i>m</i> ,2, <i>x</i>)
c(1,1,x)	c(1,2, x)	$\mathbf{b}(1,1,x)$		b $(m,1, x)$	$\bar{\mathbf{c}}(1,1,x)$	$\bar{\mathbf{c}}(1,2,x)$
c(2,1, x)	c(2,2, x)	b (1,2, x)	•••	$\mathbf{b}(m,2,x)$	$\bar{\mathbf{c}}(2,1,x)$	$\bar{\mathbf{c}}(2,2,x)$

$$(n - x + 2)$$
-th LAYER OF V_n , $x = 1, 2$
FIGURE 4

If n = 6(2k + 1) + 8, then we repeat the previous construction.

We define a magic cube \mathbf{Q}_n by the following relation

$$\mathbf{q}_n(i,j,k) = \mathbf{v}_n(i,j,k) \frac{n^3}{8} + \mathbf{q}_{n/2} \left(\left\lfloor \frac{i+1}{2} \right\rfloor, \left\lfloor \frac{j+1}{2} \right\rfloor, \left\lfloor \frac{k+1}{2} \right\rfloor \right).$$

A construction of magic squares

Similarly we find that a magic square $\mathbf{M}_n = \{\mathbf{m}_n(i,j); 1 \le i,j \le n\}$ of odd order n can be constructed using the following formula

$$\mathbf{m}_n(i,j) = \left[\left(i - j - \frac{n-1}{2} \right) - n \left\lfloor \frac{i-j + \frac{n-1}{2}}{n} \right\rfloor \right] n + \left[\left(i + j + \frac{n-3}{2} \right) - n \left\lfloor \frac{i+j + \frac{n-3}{2}}{n} \right\rfloor \right] + 1,$$
 and, for $n = 4k$, by the formulas

$$\mathbf{m}_n(i,j) = (i-1)n+j \qquad \text{if } \mathfrak{F}(i,j) \text{ is odd,}$$

$$\mathbf{m}_n(i,j) = (n-i)n+(n-j)+1 \text{ if } \mathfrak{F}(i,j) \text{ is even,}$$
where $\mathfrak{F}(i,j) = \left(i+\left\lfloor\frac{2(i-1)}{n}\right\rfloor+j+\left\lfloor\frac{2(j-1)}{n}\right\rfloor\right).$

Remark

Analogous formulas can be derived for magic d-dimensional hypercubes of order $n \ne 4k + 2$, for every integer $k \ge 1$, and every $d \ge 4$. (See [1].) For example, if d = 4 and n is odd, then we start from the formula

$$\mathbf{q}_{n}^{*}(i, j, k, l) = \mathbf{s}(i, \mathbf{s}(j, \mathbf{s}(k, l)))n^{3} + \mathbf{s}(i, \mathbf{s}(j, \mathbf{r}(k, l)))n^{2} + \mathbf{s}(i, \mathbf{r}(j, \mathbf{r}(k, l)))n + \mathbf{r}(i, \mathbf{r}(j, \mathbf{r}(k, l))) + 1.$$

Let n = 4k + 2 for $k = 1, 2, 3, \ldots$. Analogously to a magic cube \mathbf{Q}_n , we can construct a magic square \mathbf{M}_n of order n = 4k + 2. It is constructed using $\mathbf{M}_{n/2}$ and an auxiliary square $\mathbf{W}_n = \{\mathbf{w}_n(i, j)\}$. The construction of \mathbf{W}_n starts from \mathbf{W}_6 (situated in the middle of Figure 5). For example, in Figure 5, \mathbf{W}_{10} is depicted which was obtained using \mathbf{W}_6 . If n = 6(2k + 1) + 4 or 6(2k + 1), then (to preserve the sum of numbers

on its diagonals) the last two rows are changed. The elements of \mathbf{M}_n are

$$\mathbf{m}_{n}(i, j) = \mathbf{w}_{n}(i, j) \frac{n^{2}}{4} + \mathbf{m}_{n/2}(\lfloor \frac{i+1}{2} \rfloor, \lfloor \frac{j+1}{2} \rfloor).$$

1	2	1	2	0	3	0	3	2	1
0	3	0	3	2	1	2	1	3	0
1	0	1	2	0	3	0	3	2	3
2	3	0	3	2	1	2	1	1	0
0	2	3	0	3	0	3	0	3	1
3	1	2	1	2	1	2	1	0	2
0	2	1	0	2	3	0	3	3	1
3	1	2	3	0	1	2	1	0	2
3	0	2	0	1	2	1	2	0	3
2	1	3	1	3	0	3	0	1	2

FIGURE 5 – AUXILIARY SQUARE V₁₀

References

- 1. M.Trenkler, Magic cubes, Math. Gaz. 82 (March 1998) pp. 56-61.
- 2. W. S. Andrews, Magic squares and cubes, Dover, New York (1960).
- 3. W. H. Benson, O. Jacoby, *Magic cubes, new recreations*, Dover, New York (1981).

MARIÁN TRENKLER Šafárik University, Jesenná 5, 041 54 Košice, Slovakia