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1 Introduction

In connection with teaching limits at the secondary school level, many teachers often
make a mistake and neglect or omit a suitable motivation and a proper introduction
to the topic.

The history of mathematics provides many inspiring examples and approaches to
sequential convergence which can help in understanding the limit processes. There
are paralells between historical mathematical thinking and the development of math-
ematical thinking in the mind of students.

Continuous fractions can serve a teacher at a secondary school as a good material
for a motivation and an introduction to sequences and limits.

2 Ancient Greek

About three centuries B. C., in the time when nobody talked on limits and conver-
gence, the ancient Greek mathematicians used continuous fractions to calculate the
values of irrational numbers. The fact is illustrated by the following example.

Consider a square ABCD(see Picture Nr. 1). Because |AB| < |CD|, there exists
a point C1 ∈ BD with |AB| = |BC1|. The perpendicular at the point C1 crosses the
side AD in the point B1. Clearly |∠ADB| = |∠AB1D| = 45◦ . The triangle DB1C1

is isosceles and rectangular, so |B1C1| = |C1D|. Next, consider a square A1B1C1D.
The length of the side of this square is |BD| − |AC|. Again |A1B1| < |C1D| and we
can repeat the same construction in the square A1B1C1D and get a square A2B2C2D.
If repeat the process, the sides of appropriate squares ”go” to nil.

Picture Nr.1

Volkert shows in [3] how we can use this construction to aproximate
√

2. Let |AiBi| =
ai for i ∈ N and let |AB| = a0 = 1. So |BD| = √

2 and |BD| = |BC1|+ |C1D|, hence√
2 = 1+a1. Further |B1D| = |B1C2|+ |C2D|, hence |AD|− |AB1| = |B1C2|+ |C2D|
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and we can write 1 − a1 = a1 + a2, which implies a0 = 1 = 2a1 + a2. We can
continue: |B2D| = |B2C3|+ |C3D|, hence |A1D| − |A1B2| = |B2C3|+ |C3D|. We get
a1− a2 = a2 + a3, which implies a1 = 2a2 + a3. In general, we get for all nonnegative
whole numbers n : an = 2an+1 + an+2. From the preceding equations, we get:

√
2 = 1 + a1

1 = 2a1 + a2 ⇒ 1− a2

a1
= 2 ⇒ 1

a1
= 2 +

a2

a1

a1 = 2a2 + a3 ⇒ a1 − a3

a2
= 2 ⇒ a1

a2
= 2 +

a3

a2

a2 = 2a3 + a4 ⇒ a2 − a4

a3
= 2 ⇒ a2

a3
= 2 +

a4

a3

...

an = 2an+1 + an+2 ⇒ an − an+2

an+1
= 2 ⇒ an

an+1
= 2 +

an+2

an+1

...

We substitute:

1
a1

= 2+
a2

a1
= 2+

1
a1

a2

= 2+
1

2 +
a3

a2

= 2+
1

2 +
1

2 +
a4

a3

= 2+
1

2 +
1

2 +
1

2 +
a5

a4

= . . . =

= 2+
1

2 +
1

2 + . . .
1

2 +
an+1

an

⇒ 1
a1

= 2+
1

2 +
1

2 +
1

2 + . . .

⇒ a1 =
1

2 +
1

2 +
1

2 +
1

2 + . . .

This way we construct a continuous fraction for the number
√

2:

√
2 = 1 + a1 = 1 +

1

2 +
1

2 +
1

2 +
1

2 + . . .

If we understand this continuous fraction as a sequence of aproximate values of
√

2,
we can calculate :

1 +
1

2 +
1

2 +
1

2 +
1
2

= 1 +
1

2 +
1

2 +
2
5

= 1 +
1

2 +
5
12

= 1 +
12
29

=
41
29

.= 1, 413793

1 +
1

2 +
1

2 +
1

2 +
1

2 +
1
2

= 1 +
1

2 +
1

2 +
5
12

= 1 +
1

2 +
12
29

= 1 +
29
70

=
99
70

.= 1, 414286
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So we get the inequality
99
70

>
√

2 >
41
29

. From the wiewpoint of school mathematics

it is important to observe that it is possible to write this continues fraction with a
recurrent sequence:

a1 =
3
2
, an+1 = 1 +

1
1 + an

for ∀n ∈ N .

3 Leonhard Euler

Leonhard Euler (1707-1783) deals with continuous fractions in his book Introductio
in analysis infinitorum and the last chapter in the first part of the book is entitled
Continuous fractions. Let x be a positive real number. If

If x =
1

2 +
1

2 +
1

2 +
1

2 + . . .

, than x =
1

2 + x

We get a quadratic equation x2 + 2x = 1 and its solution x =
√

2− 1.
Euler generalizes this example as follows. If a is a positive real constant, then

x =
1

a +
1

a +
1

a +
1

a + . . .

, hence x =
1

a + x
and x2+ax = 1, implies x =

√
a2 + 4− a

2
.

Also in 18th century the calculation of continuous fractions was a videspread means
for getting the values of irrational numbers.

Euler constructed an algorithm how change an infinite series with the changing
signs to form continuous fractions. He explains it as follows.

Let x =
1
A
− 1

B
+

1
C
− 1

D
+

1
E
− . . . . Consider a continous fraction of the form

1

a +
α

b +
β

c +
γ

d + . . .

The partial summs of the infinite series are
1
A

,
B −A

AB
,
BC −AC + AB

ABC
, . . . and

the expressions in the continous fraction are
1
a
,

b

ab + α
,

bc + β

abc + aβ + αc
, . . .

Comparing the corresponding expressions, we get a system of equations. We explain
the procedure on the first three steps:

1
A

=
1
a
,
B −A

AB
=

b

ab + α
,
BC −AC + AB

ABC
=

bc + β

abc + aβ + αc
.

3



Hence
a = A
b = B −A
AB = ab + α
BC −AC + AB = bc + β
ABC = abc + aβ + αc
The first two equations are simple. If we substitute b into the third equation, we
have A(B−A) + α = AB and hence α = A2. We simplify the fifth equation ABC =
a(bc + β) + αc. If BC −AC + AB = bc + β, then ABC = a(BC −AC + AB) + αc =
A2(BC − AC + AB) + αc, which implies c = C − B. We substitute now into the
fourth equation for b and c. We get BC − AC + AB = (B − A)(C − B) + β, hence
β = B2. Euler generalizes these equations:

1
A
− 1

B
+

1
C
− 1

D
+

1
E
− . . . =

1

A +
A2

B −A +
B2

C −B +
C2

D − C + . . .

He illustrates this interesting construction using the Leibniz´s series :

π

4
= 1− 1

3
+

1
5
− 1

7
+

1
9
− . . . =

1

1 +
1

2 +
9

2 +
25

2 + . . .

4 Summary

We selected the above algorithms and examples from a great number of interesting
items from the history of mathematics. In my opinion, in Slovakia unsatisfactory
attention is paid to the often ingenious and seminal work of great mathematicians
of the past. It would be rather useful to include into mathematical textbooks more
such examples representing ”arts of thinking” also an integral part of culture and
history. This is in particular suitable when introducing some important notions
and constructions, or when teaching ” how to solve mathematical problems”. An
interested reader can find more information about teaching mathematics ”via history”
in [6].
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